The resources used to inspire and execute this project are wide-ranging and interdisciplinary. We highlight in bold the work that has especially contributed to the development of FAIR2.

Abrams, J. A., Tabaac, A., Jung, S., & Else-Quest, N. M. (2020). Considerations for employing intersectionality in qualitative health research. Social Science & Medicine, 258, 113138.

American Economic Association. (2020, June 5). Statement from the AEA Executive Committee. Retrieved from

Canning, P., & Stacy, B. (2019). The Supplemental Nutrition Assistance Program (SNAP) and the Economy: New Estimates of the SNAP Multiplier (Economic Research Report No. 291963). United States Department of Agriculture, Economic Research Service. Retrieved from

Cohen, M., Rohan, A., Pritchard, K., & Pettit, K. L. S. (2022). Guide to Data Chats: Convening Community Conversations about Data. Urban Institute.

Gray, C. (2019). Leaving benefits on the table: Evidence from SNAP. Journal of Public Economics, 179, 104054.

Howe, C. J., Bailey, Z. D., Raifman, J. R., & Jackson, J. W. (2022). Recommendations for Using Causal Diagrams to Study Racial Health Disparities. American Journal of Epidemiology, 191(12), 1981–1989.

Kenney, E. L., Soto, M. J., Fubini, M., Carleton, A., Lee, M., & Bleich, S. N. (2022). Simplification of Supplemental Nutrition Assistance Program Recertification Processes and Association with Uninterrupted Access to Benefits Among Participants with Young Children. JAMA, 5(9)

Kilbertus, N., Rojas Carulla, M., Parascandolo, G., Hardt, M., Janzing, D., & Schölkopf, B. (2017). Avoiding Discrimination through Causal Reasoning. Advances in Neural Information Processing Systems, 30. Curran Associates, Inc. Retrieved from

Kleinberg, J., Ludwig, J., Mullainathan, S., & Sunstein, C. R. (2018). Discrimination in the Age of Algorithms. Journal of Legal Analysis, 10, 113–174.

Manski, C. F. (2013). Public Policy in an Uncertain World: Analysis and Decisions. Cambridge, MA: Harvard University Press.

Lane, S. R., McClendon, J., & Matthews, N. (2017). Finding, Serving, and Housing the Homeless: Using Collaborative Research to Prepare Social Work Students for Research and Practice. Journal of Teaching in Social Work, 37(3), 292–306.

Lundberg, I., Johnson, R., & Stewart, B. M. (2021). What Is Your Estimand? Defining the Target Quantity Connects Statistical Evidence to Theory. American Sociological Review, 86(3), 532–565.

Muhammad, K. G. (2019). The Condemnation of Blackness: Race, Crime, and the Making of Modern Urban America, With a New Preface. Cambridge, MA: Harvard University Press.

OHCHR. (2018). A Human Rights-Based Approach to Data. Geneva: Office of the United Nations High Commissioner for Human Rights. Retrieved from Office of the United Nations High Commissioner for Human Rights website:

Pearl, J. (1995). Causal diagrams for empirical research. Biometrika, 82(4), 669–688.

Pearl, J. (2022). Causal Inference: History, Perspectives, Adventures, and Unification (An Interview with Judea Pearl). Observational Studies 8(2), 1-14. doi:10.1353/obs.2022.0007.

Pearl, J., & Mackenzie, D. (2018). The Book of Why: The New Science of Cause and Effect (1st ed.). USA: Basic Books, Inc.

Robinson, W. R., Renson, A., & Naimi, A. I. (2020). Teaching yourself about structural racism will improve your machine learning. Biostatistics, 21(2), 339–344.

Rocca-Serra, P., Sansone, S.-A., Gu, W., Welter, D., Abbassi Daloii, T., & Portell-Silva, L. (2022). Reflections on the Ethical values of FAIR. In D2.1 FAIR Cookbook. Zenodo. Retrieved from

Roewer-Despres, F., & Berscheid, J. (2020, November 29). Continuous Subject-in-the-Loop Integration: Centering AI on Marginalized Communities. arXiv. Retrieved from

Salazar, Z. R., Vincent, L., Figgatt, M. C., Gilbert, M. K., & Dasgupta, N. (2021). Research led by people who use drugs: Centering the expertise of lived experience. Substance Abuse Treatment, Prevention, and Policy, 16(1), 70.

Schalet, A. T., Tropp, L. R., & Troy, L. M. (2020). Making Research Usable Beyond Academic Circles: A Relational Model of Public Engagement. Analyses of Social Issues and Public Policy, 20(1), 336–356.

Wilkinson, M. D., Dumontier, M., Aalbersberg, Ij. J., Appleton, G., Axton, M., Baak, A., … Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific Data, 3(1), 160018.

Back to Resources Main Page